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A Theory of Diagnostic Inference:
Judging Causality

It was late in middle age that Moli~re's character, Monsieur Jourdain,

made the surprising discovery that he had been speaking prose all his life.

Similarly, people may be equally surprised to learn that they have been

engaged in diagnostic inference all their lives. By "diagnostic inference"

we mean the following: given the occurrence of a set of outcomes/results/

symptoms, people infer what causal process could have produced the observed

effects. The essential aspects of such inferences are that they are causal

rather than correlational, backward rather than forward (one goes from effects

to prior causes), concerned with a specific rather than the general case, and

constructive (one can synthesize, enlarge, or otherwise develop new hypo-

theses). The importance of diagnostic inference goes beyond its obvious role

in making sense of experience; it impacts on choosing between courses of

action; and it is crucial for prediction and the defining of "relevant"

variables since both depend on some inferred model of the process that

generates outcomes (Einhorn & Hogarth, 1982). Furthermore, since the evidence

that one has for making diagnoses is fallible and/or conflicting, the process

takes place under uncertainty. Thus, the essential nature of inference,

Hgoing beyond the information given" (Bruner, 1957), is as true for diagnosis

as it is for prediction. However, while much attention in the literature on

judgment and decision making has been devoted to prediction (e.g., Kahneman &

Tversky, 1973), far less has been paid to diagnosis (for exceptions see, Eddy

£ Clanton, 1982; Elatein, Shulman, & Sprafka, 1978).

Our approach is to focus on the role that causal judgments play in the

diagnostic process. The topic of causal judgment has received considerable

attention from a variety of perspectives, e.g., child development (Piaget,
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1974; Shultz, 1982); social psychology (Kelley, 1973; Jones, 1979; Nisbett &

Ross, 1980); law (Hart & Honore, 1959; Cohen, 1977; Fincham & Jaspars, 1980);

probabilistic inference (3up~es, 1970; Tversky & Kahneman, 1980); medicine

(Susser, 1973); methodol-' 'Cook & Campbell, 1979); economics (Zellner,

1979); and, of course, . -,y. However, in recent years, a growing body

of research has investl-.i how people make judgments and decisions under

conditions of uncertainty. This approach, called "behavioral decision theory"

(for reviews see Slovic, Fischhoff, & Lichtenstein, 1977; Einhorn & Hogarth,

1981) takes as its focus the description, via quantitative models, of the

rules and strategies people use in forming judgments and/or choices. Thus,

while implicitly and explicitly recognizing the contributions of many of the

perspectives enumerated above, we wish to explore how principles from judgment

research can illuminate the role of causal thinking in diagnosis.

We begin by drawing an analogy between the processes of diagnosis and

perception. In particular: (1) The importance or strength of information in

perception depends on the background or field against which it is perceived.

For example, object salience involves a figure/ground relation that can be

changed by appropriate shifts in the ground as well as in the figure.

Similarly, we view the strength of evidence in diagnosis as being highly

dependent on an assumed causal background or field and we use the concept of a

causal background to determine causal "relevance"; (2) We view the diagnostic

process as similar to detecting the appropriate signal in a field of competing

signals. However, as in perception, the probabilistic nature of informational

cues adds noise to each signal such that a particular pattern of cues is

diagnostic of more than a single ca-. -f. Campbell, 1966). The

importance of this is that the strength of evidence for a particular diagnosis

is seen as its net strength; i.e., how well the evidence supports a particular
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hypothesis as opposed to its competitors; (3) Diagnosis is a constructive

process in that people bring prior expectations to bear in interpreting

information and in enlarging hypotheses to account for complex outcomes.* In

analogous fashion, the importance of expectations and the constructive nature

of "achieving" the object are well established in perception (cf. Garner,

1966). Moreover, the introduction of expectations as central to diagnosis

(and perception) highlights the role of content knowledge in the assessment of

evidence and raises questions of how such knowledge is used; (4) Diagnostic

inference often occurs with great speed and a corresponding lack of awareness

of the underlying processes. This is also true of perception.

Underlying much diagnostic inference are questions of the following form-

outcome Y has occurred, how likely was X the cause? As a specific illustra-

tion, imagine that a watch face has been struck sharply by a hammer and the

glass breaks. You are then asked to assess how likely the breakage was caused

by the force of the hammer. We argue that answers to this question will be

mediated by three types of information: (1) The number and strength of

specific alternative explanations. Part of the reason that the force of the

hammer is a strong causal candidate is due to the fact that it is difficult to

imagine specific alternatives that could reduce one's belief in that

explanation. (2) The assumed causal background against which the judgment is

made (Mackie, 1974). For example, reconsider your response to the above

question if the context was changed to a watch factory where a hammer strikes

watch faces as part of a testing procedure. As we will demonstrate later,

in this context, a defect in the glass is judged as the most likely cause;

(3) The Judged causal strength of the explanation. We maintain that people

use certain cues-to-causality in assessing the quality of an explanation;

namely, temporal order, contiguity, covariation, and similarity of cause and
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effect. In our example, note that the glass broke immediately after being

struck by the hammer; there is a high correlation between the breaking (or

not) of glass with the force of solid objects; and there is similarity between

the length and strength of cause and effect.

Plan of the Paper

We organize our discussion around the three aspects of causal judgments

just noted: (1) How, and how much, do alternative explanations affect the

strength of a causal hypothesis?; (2) How does the causal background affect

the "relevance" of explanations?; and (3) How are the cues-to-causality

combined in assessing the plausibility of a hypothesis and/or its alterna-

tives? Following the development of a theory to answer these questions, we

present a series of experiments to test the various components of the theory.

Thereafter, we discuss the theory and experimental evidence in relation to:

(1) the factors that affect the discounting of an explanation; (2) issues

in combining the cues-to-causality; (3) problems in defining the causal

background; and, (4) some normative questions in assessing the quality of

causal judgments.

2ae Diagnostic Process

The Effects of Alternatives

How do alternatives affect the judged likelihood of a causal explanation?

In this section, we propose a model that rests on the notion that people

employ an anchor-and-adjust strategy when assessing the strength of an

explanation/hypothesis. To illustrate, consider an outcome Y, an initial

explanation X, and alternative explanation Z1. Furthermore, denote the "gross

strength* of an explanation as being its plausibility or strength before

competing alternatives are considered. Thus, the gross strengths of X and Z
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refer to their plausibility when each is considered the sole explanation of

Y. We propose that people anchor on the gross strength of the initial

explanation X, and then adjust downward for the gross strength of Z1 •

Moreover, the amount of the adjustment will depend on the strength of the

anchor as well as the strength of the alternative. In particular, we assume

that alternatives of equal strength discount strong explanations more than

weaker ones. For example, imagine that one anchors on a weak hypothesis and

is then confronted with a strong alternative. Since the anchor is already

low, the size of the adjustment cannot be too large (indeed, if the anchor

were worthless, there would be no adjustment). On the other hand, if the

anchor was strong, we argue that the same alternative would discount the

anchor substantially. Therefore, the basic idea is that the stronger the

anchor, the larger the adjustment (holding the strength of alternatives

equal). We call the strength of an explanation after it is reduced by an

alternative, its "net strength."

The above process can be formally represented as follows:

Si(Y,XIB) - so(Y,XjB) - wo s(y,ZiIB) (1)

where,

SI(YXJB) = net strength of the causal link of Y

with X, conditional on background B,

after adjusting for ZI

so(Y,XIB) - gross strength of the causal link of

Y with X, conditional on background B

s(Y,z IB )  gross strength of the causal link of Y

with Z1 , conditional on background B

Wo- adjustment weight applied to the gross

strength of Z1 (0 w• I)
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in equation (1) (and throughout the paper), we adopt the convention that

capital "S" stands for net strength and small "s" denotes gross strength. Of

course, before any alternative is considered, So W so . Note that the

adjustment weight, w, has the same subscript as the anchor since it is a

function of the latter (see below). Now consider what happens when a second

alternative, Z2, is introduced. We assume that the anchor-and-adjust

strategy proceeds sequentially so that the net strength of X becomes the new

anchor for the next adjustment. Thus,

S2 (YXIB) - SI(Y,XIB) - w, s(Y,Z21B) (2)

Equation (2) can now be generalized to account for the net strength of X after

the kth alternative (k - 1,2, ... , K); thus,

Sk(Y,XIB) - Skl(Y,XIB) - wk_1 s(Y,ZkIB) (3)

Furthermore, since Sk(Y,XIB) is a judged likelihood, it is bounded between 0

and 1.

We now consider the functional relation between the strength of the

anchor and the adjustment weight, w (called the "adjustment weight

function"). It was assumed above that stronger anchors have larger

adjustments. This implies that the adjustment weight is a monotonically

increasing function of the strength of the anchor. To see this, consider

equation (3) when the gross strength of Zk is constant and the anchor

varies in strength. It is clear that as Sk. I (Y,XIB) increases, wk.1

must also increase to give larger adjustments. In order to model this

monotonic relation, we posit a simple and convenient form, although others

might serve as well; thus,
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Wk-1 = [Sk-1(Y,XiB)]
c  (a ; 0) (4)

To discuss (4) and the substantive meaning of a, consider Figure 1. First,

InseLrtFi ure 1 about here

note that the adjustment weight is monotonically increasing with the strength

of the anchor, regardless of the value of a. Second, when the anchor is 0

the adjustment weight is 0, for all a. Thus, when a hypothesis is worthless,

it cannot be adjusted below 0. Moreover, when the anchor is 1, the adjustment

weight is 1. This means that a "certain" explanation will be adjusted solely

by the gross strength of an alternative. Third, a affects the amount by

which explanations are discounted. For example, a > 1 implies that the

adjustment weights are less than the anchor; a = 1 implies that adjustment

weights equal the anchor; 0 4 a < 1 implies that adjustment weights are

larger than the anchor. The importance of this for the final net strength of

X can be seen by first substituting (4) into (3). This yields;

sk (Y'xlB) sk-(Y'xlB) - [Sk (Y,XIB)] s(YzklB) (5)

Using equation (5) as the computational form of the anchor-and-adjust

model, we now illustrate the effect that a can have on net strength.

Imagine that the gross strengths of X and Z, are .60 and .50, respectively.

If a - .5, SI(Y,XIB) - .21; if a - 1, SI(Y,XIB) - .30; if a - 2,

Si(Y'XB) - .42. Therefore, as a increases, the adjustment weight

decreases, as does the amount of the adjustment. In accord with this, we

interpret a as reflecting the "weight" or importance given to disconfirma-

tory evidence. Thus, when a is large, alternative hypotheses are weighted

less and adjustments are small. Indeed, note that as a + , the adjustment
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0 0

S k-I(YIXIB)

Figure 1. The Adjustment Weight Function



weights go to zero so that alternative explanations have no effect on the

initial strength of a hypothesis. In contrast, when 0 4 a < 1, adjustment

weights are large and initial hypotheses are strongly discounted by alterna-

tives. When a = 1, hypotheses are discounted by alternatives in a "neutral"

manner. In the experimental work to be presented later, we both estimate a

empirically and predict the net strength of an explanation after the

presentation of one and two alternatives. Thus, equation (5) provides a

simple and interpret.b! one-parameter model that is easily subjected to

empirical testing.
1

We now discuss how the moaal specified in (3) and (5) captures important

aspects of the causal judgment process. In order to do so, we consider the

model in its non-sequential form;

SK(Y,xI) - so(Y,XIB) Wk 1 s(Y'ZklB) (6)
k=1

Therefore, the net strength of an explanation is equal to its gross strength

minus the sum of the adjusted alternative explanations.

There are several important aspects of equation (6): (a) All terms

are conditioned on some assumed or implicit causal background. Thus, the

strength of any factor as a cause of Y depends on the context being considered

(this is considered in detail later); (b) While the gross strength of an

explanation can be viewed as analogous to the absolute strength of a signal

perceived against a noiseless background, its net strength can be seen as

resulting from two conflicting forces; the strength of the signal vs. the

strength of competing signals that comprise specific alternative explanations.

Note that equation (6) is consistent with the view of causal strength as

stressed by Campbell and colleagues (Campbell & Stanley, 1963; Campbell, 1969;
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Cook & Campbell, 1979); that is, causal strength should be evaluated by the

ruling out of alternatives. Indeed, the assessment of "internal validity,"

whereby one asks what other factors than X could have produced Y, seems to be

important in all causal judgments. In fact, Mackie (1974) states that the

primitive-notion of a cause involves asking oneself the question: "Would

Y have occurred if X had not?" The greater the nunber of alternative

explanations underlying a "yes" answer, the lower the causal strength of

X for Y. Note that the posing and answering of the above question (the

"counterfactual conditional") may involve doing a real or "thought"

experiment. In the former, one compares the effect of X on Y with that of

on Y (the control group condition). In this way, the counterfactual question

is easily answered. In the latter, one can imagine the world before X, go

forward to where X would occur, and then delete it from the scenario. If the

scenario is now run forward from that point, one can imagine if Y happens or

not. Clearly, in such thought experiments, the construction of "possible

worlds" and imaginary scenarios is crucial for judging causal significance.

The idea that counterfactual reasoning and thought experiments are a

crucial component of causal inference helps to explain the power of certain

explanations in non-experimental situations. As a case in point, consider the

following one-shot case study with a single datum: The occurrence of a huge

explosion near Los Alamos, New Mexico, in July 1945. No one doubted this to

be the effect of detonating an atomic bomb, Clearly, inferring causality in

this poorly designed experiment was not difficult whereas assessing causality

in the most meticulously designed experiments in social science is often

problematic at best. When one considers why the causal inference is so strong

in the bomb example, ask yourself the following question: "Would an explosion

of such magnitude have occurred if an atomic bomb had not gone off?" While it
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is possible to think of alternative explanations for the explosion, they are

so unlikely as to be virtually non-existent. Therefore, even in one-shot case

studies with no control group, the causal strength of an explanation can be

substantial (see Campbell, 1975, for an illuminating discussion of this

issue); (c) While the role of alternatives is important in assessing causal

strength, equation (6) posits that net strength follows a difference rather

than a ratio model. This has important implications for the case where few or

no alternatives are imagined. For example, a ratio model (such as probability

theory) would treat the strength of evidence for a hypothesis as certain if

there were no alternatives. However, in equation (6), net strength can be low

when there are no alternatives if the gross strength of X is itself low.

(Note that this does not contradict the atomic bomb example given above since

we would argue that the gross strength of this explanation is high; i.e., the

cues of temporal order, contiguity in time and place, constant conjunction,

and similarity of cause and effect, all point to a causal relation.) More-

over, net strength can also be low when gross strength is high if there are

many strong alternatives. indeed, net strength can only be high if gross

strength is high and the strength of specific alternatives is low. To

illustrate, reconsider the initial watch-hammer scenario and contrast the net

strength of the "force of the hammer" explanation with the net strength of

any single explanation for the following questions:

1.* Why are the outer rings of Saturn braided?

2. Why was Ronald Reagan elected President in 1980?

For the first question, it is difficult to generate a single explanation,

thus suggesting its gross strength is low. However, although there are no

competing explanations, net strength remains low in accord with equation (6).

For the second question, there are many strong explanations (e.g., the



situation of the economy; the rise of the moral majority; the unresolved

Iranian hostage problem; etc.). Therefore, while the gross strength of these

are high, the net strength for any single one is low precisely because the

others are plausible alternatives. On the other hand, the watch-hammer

question leads to high net strength since the explanation is strong and there

are few plausible alternatives. In short, it is argued that like good

patterns, good explanations have few alternatives (Garner, 1970); or, to be

more precise, whereas good explanations imply few alternatives, the lack of

alternatives does not imply good explanations; (d) while we only consider the

causal strength of a single factor in producing Y, equation (6) can be

generalized to the assessment of scenarios based on multiple causes. For

example, imagine that Bob has been fired MY, and you know that he was often

late to work (X 1 ), didn't get along with his co-workers (X2 ), and was a

mediocre performer (X3 )- In order to judge the strength of the explanation

that Bob was fired because of all three factors, define a complex factor ai

such that, (9 - (xlnx 2flx 3)' The causal strength of (9 can now be assessed

via equation (7). Thus,

S K(Y411IB) - s 0(Y(1 B) - wk-1 s(Y,e k B) (7)
k=1

where, G k kth alternative scenario (k - 1,2, ...,K)

Note that the causal background and alternative explanations (both simple and

complex) are still crubial. Thus, the gross strength of Ql would be reduced

if, for example, most workers were late, didn't get along with co-workers,

etc.; or, a good alternative explanation existed (e.g., the company was going

broke and had to let peoplft go). The idea of complex factors or scenarios as
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explanations is an important topic that requires separate treatment (cf.

Macie, 1974). However, since scenarios are comprised of individual links, it

is first necessary to understand the factors that affect these basic

components before studying the more complex case.

Relevance and the Causal Background

We were careful in the preceding section to condition all terms on the

causal background, B. The reason for doing this will be discussed in this

section. To begin, we ask why some variables seem more causally relevant

than others. To answer this question, we first need to consider what events/

outcomes trigger diagnostic curiosity. we propose that events of diagnostic

interest are those that are unusual, abnormal, or unlikely. Thus, one rarely

seeks the cause of why one feels "average," why traffic flowed normally, or

why some accident is typical. To be sure, diagnostic curiosity can be aroused

vis-&-vis normal events. However, this is most likely to happen when those

events violate expectations and are therefore seen as unusual after all. For

example, we might want to know why traffic flowed normally if major highway

improvements were just completed, or why we feel "average" after hearing about

a death in the family. Therefore, diagnostic inference is invoked to make

sense of deviations via causal explanation. However, it is important to note

that the meaning of a deviation is itself crucially dependent on some assumed

background or field. Indeed, even averages can be made unusual with the

appropriate shift of background--consider Oscar Wilde's statement that,

"moderation shouldn't be taken to extremes."

In searching for a cause of some outcome which is a deviation from the

normal or average, we propose that attention is directed toward prior

deviations or abnormal events. Thus, unusual effects are seen as the result

of unusual causal circumstances. in fact, one can consider this belief a
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special case of the "representativeness" heuristic (Kahneman & Tversky, 1972)

in that causes and effects are similarly discrepant from some assumed causal

background. However, the manner in which the causal background affects the

strength of causal links needs to be considered in more detail. Specifically,

it is argued that causal relevance is generally related to the degree that a

variable is a difference-in-a-background (Mackie, 1974). By this is meant

that factors that are part of some presumed background are judged to be of

little or no causal relevance. For example, does birth cause death? While

the former is both necessary and sufficient for the latter (and thus covaries

perfectly with it), it seems odd to consider one the cause of the other. The

reason is that death presumes that one has been born. Therefore, "birth" is

part of the background and its causal relevance is low.

The importance of the background is not limited to situations in which

there is perfect correlation between causes and effects. Consider why oxygen

is irrelevant as the cause of a house fire, but relevant in a fire on a

spaceship. Since oxygen is equally necessary for fires in both places, some

notion of a difference-in-a-background is needed to distinguish these cases.

For example, in accord with our model let, Y - fire, X - oxygen, B - causal

background for the house fire, and, C - causal background for space travel.

In the house fire, the gross strength of oxygen as a causal agent is

essentially zero since the causal background B already contains the presump-

tion that oxygen was present. Thus, s(Y,XIB) - 0 since X is part of B

and cannot be a difference in that background. Moreover, recall that if gross

strength is zero, net strength will be zero since the adjustment weight, w,

will be zero. Now consider the spaceship fire; note that s(Y,XlC) is not

zero since oxygen is not part of the causal background of space flights.

Indeed, leaking oxygen would be an important difference-in-the-background.
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However, this is not to say that oxygen would necessarily be a strong causal

candidate since its net strength would depend on alternative explanations. On

the other hand, it would not be immediately dismissed as irrelevant, as in the

case of a house fire.

There are several implications to be drawn from considering causal

relevance in relation to some assumed background: (a) Shifts in background-

imagine the following scenario: Joe is a chemical worker who contracts lung

cancer and sues the company for causing his disease. His lawyer argues that

the cancer rate of workers in this factory is nine times the national average

for workers in comparable industies. Note that the background in this

argument is industries of a certain type and the causal argument rests on

there being a difference (higher cancer rates) in this background. However,

the lawyers for the chemical company may shift the background by arguing that

Joe has smoked cigarettes for years, comes from a family with respiratory

problems, and so on. Note that the background is now changed to people with

certain personal habits and characteristics, and in this background, lung

cancer may not be unusual. This argument reduces the strength of the chemical

factory explanation in two ways - it introduces a strong alternative

explanation and, the background shift changes Y from an unusual event that

requires a special causal explanation, to a usual event that requires no such

explanation. It is expected that the conflict that arises in evaluating

evidence that is highly sensitive to background shifts is particularly

difficult to resolve; (b) Narrowing/widening the background - equation (6)

suggests that net strength can also be altered by narrowing or widening the

same background. This occurs because alternative hypotheses are either ruled

out by narrowing the context or expanded by widening it. In terms of equation

(6), changes in the number of imagined alternatives is represented by a



15

smaller limit of summation (K) in the adjustment term. Therefore, the width

of the background can also affect the causal strength of ar. explanation. In

the above scenario, for example, mote how Joe's case would be strengthened if

it could be shown that the cancer rate in his factory was nine times the rate

of other chemical factories making exactly the same product. The reason is

that by narrowing the field to chemical plants making the same product, the

number of alternative explanations is reduced, thereby making the difference

in the narrowed field more causally relevant. A similar idea has been

advanced by Bar-Hillel (1980). In considering the research showing that

people ignore base rates in making probability judgments, she demonstrates

that base rates will be used if they are made more specific or if they can be

given a causal interpretation. She suggests that both specificity and a

causal interpretation increase the "relevance" of information, and thus its

use. From our perspective, Bar-Hillel's treatment of relevance is consistent

with our concept of net strength; both are increased by a causal interpreta-

tion of evidence and a narrowing of the background (specificity) which reduces

alternatives; (c) Depth of the background - consider the issue of reductionism

in causal explanations, where causes at a molar level are different from those

at a molecular level. If one thinks of the background B as analogous to the

field of vision under a microscope, then shifts in magnification of the lens

define different fields. Moreover, since causal relevance is a difference-in-

the-field, it is obvious that a cause at one level will not necessarily be

relevant at another. This microscope analogy makes clear that the "appropriate"

level of magnification depends on one's purposes and the extent of one's

knowledge of the phenomenon in question. Thus, a biochemist may see the

causal link between smoking and lung cancer as due to chemical effects of tar,

nicotine, and the like, on cell stucture, while an immunologist might see the
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causal link as due to the suppression of the immune system in controlling

diseases in general. However, it should be noted that the level of the field

is not totally arbitrary in everyday inferences. Indeed, there is remarkable

consensus among individuals as to the appropriate level of the assumed

background. On the other hand, where large discrepancies exist in knowledge

about a particular topic, as in comparing experts to non-experts, such

consensus is often lacking.

Components of Gross Strength: Cues-to-Causality

The factors that comprise the gross strength of a causal hypothesis are

now considered in detail. Specifically, it is hypothesized that gross

strength (conditional on an assumed background), is a function of various

"cues-to-causality" such as temporal order, contiguity, covariation, and

similarity of cause and effect. However, before discussing these, we note

that the term "cues" has a specific meaning that corresponds with its use in

Brunswik's psychology (1952; also see Hammond, 1955; Campbell, 1966). Thus:

(1) The relation between each cue and causality is probabilistic. That is,

each cue is only a fallible sign of a causal relation; (2) People learn to use

multiple cues in making inferences in order to mitigate against the potential

errors arising from the use of single cues; (3) The use of multiple cues is

facilitated by the intercorrelation (redundancy) between them in the environ-

ment. This both reduces the negative effects of omitting cues, and aids in

directing attention to the presence of others; (4) Although multiple cues

reduce uncertainty in inference, they do not entirely eliminate it.

The concept of cues-to-causality also contains the following aspects:

(a) While each cue can be viewed as a unitary concept, it is more useful to

consider them as containing several elements. For example, contiguity can be

decomposed into temporal and spatial components and temporal contiguity can be
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further divided into the time interval between cause and effect and the

regularity of the interval. The importance of considering the elements of

each cue will become apparent as we proceed, especially with regard to

covariation and similarity; (b) The cues are considered to be primitives in

the construction of causal theories or scripts/schemas (Abelson, 1981). By

this is meant that they serve as basic building blocks in the development of

schemas and, conditional on such schemas, they are used to modify and expand

on prior theories. This implies that the relations between cues and causal

judgments will be affected by prior knowledge and expectations. For example,

imagine that one has advertised a product and sales go up dramatically the

next day. If one believes that advertising works by a gradual diffusion

process, the sales increase may not be attributed to the ad precisely because

the events occurred too close in time. on the other hand, contiguity could be

seen as monotonic with causal strength by others with different theories, or

by the same person in another context. Therefore, the relation between cues

and causal judgments is conditional on prior theory. In terms of the basic

model represented in equation (6), the conditioning of gross strength on a

background B suggests that the particular context engages prior knowledge

which, in turn, conditions the cues.

we now consider the individual cues. The first cue to be considered is

temporal order (demoted Q1). The importance of temporal order seems obvious

since it labels which of two variables in a relation is cause and which is

effect. Furthermore, temporal order is often necessary in learning, as in

classical conditioning. Indeed, when the order of presenting the conditioned

and unconditioned stimuli is reversed, learning is difficult and attempts at

backward conditioning have generally been unsuccessful.

An interesting feature of temporal order is the speed and facility with
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which it is used--often without explicit awareness. This is particularly the

case in the interpretation of language and can be illustrated by contrasting

ordinary discourse with a system that is both acausal and atemporal; e.g.,

probability theory (cf., Tversky & Kahneman, 1980). To illustrate, consider

the conjunction "and," which frequently implies temporal order in everyday

English (Strawson, 1952); e.g., he went into the supermarket and bought some

coffee. If "going into the supermarket" and "buying some coffee" are repre-

sented by S and K, respectively, how should one understand the question, "What

is the probability of S and K?" Whereas a statistician would represent the

question as p(SnK) and ignore the temporal meaning of "and," others may well

perceive the question as formally requiring p(KIS). Indeed, to direct atten-

tion to the conjunction of the events, it might be helpful to reverse S and K

in order to break the implied time order, i.e., "What is the probability of

buying some coffee (K) and going into the supermarket (S)?" An experiment to

test this assertion was performed using graduate students with at least ode

statistics course. One group (n, = 24) was asked to choose how they would

represent "S and K" probabilistically, while a second group (n2 = 24) was

asked to represent "K and S". Subjects chose from either p(SnK), p(KIS),

p(SIK), or "none of the above." The results showed an increase for

p(SnK) when the time order was reversed (58% to 75%). Of further interest

was the finding that 38% of the subjects chose p(KIS) in the first group (in

accord with the natural order of the events) whi'a no subjects chose p(K[S)

in the second group. Clearly, temporal order is an important cue that is

difficult to ignore, even when it may be appropriate to do so.

The second cue to be considered is contiguity (denoted Q2 ). Contiguity

is important because it aids in focusing attention on what variables occurred

close in time to, and/or in the vicinity of, some effect Y (cf. ichotte,
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1946). Indeed, Siegler has shown that for young children (5-6 years old),

temporal contiguity is a very strong cue for inferring causality (Siegler &

Liebert, 1974; Siegler, 1976). Moreover, these studies show that older

children are less dependent on contiguity alone, being able to make use of

multiple cues. In the absence of high contiguity, variables may still be seen

as causally related when they can be linked together via prior theory. For

instance, the temporal gap between intercourse and birth requires some

knowledge of human biology and chemistry to maintain the links between those

events. Similarly, to connect the raising of oil prices in the mid-East with

increases in the U.S. inflation rate neccessitates an economic model to bridge

the spatial gap.

Our third cue-to-causality, perceived covariation (denoted Q3 ), has been

the subject of much research in the judgment literature (see e.g., Crocker,

1981). Whereas variables that covary may be continuous, dichotomous, or a

mixture of both, the literature has typically considered judgments between

dichotomous variables (X and Y) that can be represented by a 2 x 2 con-

tingency table. We conceive of covariation judgments based on the cell

frequencies in such tables to result from a weighted linear combination

process. That is,

4
Q3  q Biqi (8)

iI

where, ql M (xnY); q2 " (xli); q3  (xfY); q4 - (iY); and the 0, are

weighting parameters.

Equation (8) provides a simple and convenient way of summarizing much of

the research on covariation judgments. For example, Smedslund (1963) and

Jenkins and Ward (1965) showed that their subjects' judgments were based

almost exclusively on XY (i.e., 81 > 0, 8 - 8 - 8 - 0); Ward and

-- - . . . .... I II II III I | I II • I 2 3 4 1 1 . ..
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Jenkins (1965), however, changed the way information was presented to subjects

(from sequential to intact displays), and found different patterns of use

(many subjects ignored disconfirming evidence, i.e., 8 = 83 = 0; many other

subjects weighted all cells); Einhorn and Hogarth (1978) noted that infor-

mation is frequently absent from real-world tasks such that 8, 82 > 0 but

83 =84 = 0. Furthermore, a recent meta-analysis by Lipe (1982), has shown

$ a2 and 83 to be significant and in the expected direction (81 > 0;

8 2, 83 < 0), when subjects' judgments were regressed onto the four data

cells. She also found that 8 was the largest weight, thus confirming the

finding that positive constant conjunction plays an especially large role in

judgments of covariation.

On the other hand, numerous studies have also shown that people can and

do make use of all the qi's that are available (see Alloy & Abramson, 1979;

Crocker, 1981). Indeed, Crocker (1982) demonstrated that the type of question

subjects are asked can greatly affect attention, and thus the weight particu-

lar information is given (also see Arkes & Harkness, 1983). For example, in a

study by Schustack and Sternberg (1981), people were given information in the

form of the four cues above but were asked for causal rather than covariation

judgments. Their results showed significant positive coefficients for both

types of constant conjunction (i.e., 81 > 0, 84 > 0), and significant

negative coefficients for disconfirming data (i.e., 82 < 0, 83 < 0). In

another study (Waller & Felix, 1982), subjects were asked to judge the same

information by answering both a causal and a correlational question. In

accord with our view that covariation is a fallible cue to causality, they

found a moderate but significant correlation between the two types of

judgments (r - .57).

In addition to the type of question asked, the purpose for which covari-
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ation judgments are made can affect the amount and kind of information used.

For example, Seggie and Endersby (1972) have demonstrated that people are

sensitive to the strength and direction of all four components of covariation

when these are linked to taking actions, as opposed to making judgments per

se. Moreover, this occurred when data were presented in both sequential and

intact displays, and this latter result has also been replicated by Lipe

(1982). In a related vein, a classic paper from industrial psychology speaks

to the issue of how good people need to be at detecting covariation. Taylor

and Russell (1939) examined the sensitivity of success rates, in terms of

dichotomous performance measures, to differences in the levels of test-

performance correlations. They showed that high success rates can be achieved

with low correlations under a variety of conditions. In other words, the

contexts of many decisions may not require people to be sensitive to more than

rough levels of covariation.

The explicit use of covariation data as a basis for judgments of

causality has also been the focus of much research in attribution theory (cf.

Kelley & Michela, 1980). Indeed, Kelley (1973, p. 108) speaks of the

"covariation principle," i.e., "An effect is attributed to the one of its

possible causes with which, over time, it covaries" (italics in original).

Kelley's insight was to note that various patterns of information concerning

distinctiveness, consensus, and consistency, corresponded to covariation with

given alternative causes (i.e., person, stimulus, circumstances), and this

view has received empirical support (see e.g., McArthur, 1972). While such a

position is compatible with our own (see Lipe, 1983), our emphasis on multiple

cues, the causal field, and a detailed combining rule, distinguishes the two

approaches.

Finally, in accordance with our framework, we emphasize that perceived
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covariation is conditioned on a specific causal background. However, we also

argue that people are sensitive to the extent to which a statistical relation

holds up across several backgrounds. in short, confidence that one has

identified a causal relation may be bolstered to the extent that it is robust

against changes in conditions (Toda, 1977). To illustrate, if researchers

detected a statistical relation between a particular diet and a form of cancer

in the U.S., the causal significance of this finding might be changed

depending on the degree to which the relation was found to hold in other

countries.

The cue of similarity (denoted Q4) is fundamental to causal judgments.

Like covariation, similarity can be modeled as a function of its elements,

some of which add, and some subtract, from its strength. That is, following

Tversky (1977), similarity judgments can be defined as a weighted linear

function of the common elements of two objects (cf. constant conjunction)

minus the distinctive elements of each (cf. disconfirming data). However, to

extend this conception of similarity from objects to causes and effects, it is

necessary to specify the common and distinctive elements of the latter. These

can be considered at several levels. First, there is a long-standing notion

that cause and effect should exhibit some degree of physical resemblance.

Mill noted that this is a deeply rooted belief that, "not only reigned supreme

in the ancient world, but still possesses almost undisputed dominion over many

of the most cultivated minds" (cited in Nisbett & Ross, 1980, p. 115). mill

thought that such a belief was erroneous and many cases exist in which

physical resemblance has been misleading. For example, Nisbett and Ross

(1980) point out that physical resemblance was the cornerstone of a medical

theory called the "doctrine of signatures" whereby cures for diseases were

thought to be marked by their resemblance to the symptoms of the disease.
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Thus, the curing of jaundice was attributed to a substance that had a

brilliant yellow color (see also Shapiro, 1960; Shweder, 1977). However,

whereas physical resemblance may be a cue of low validity, it does not mean

it has no validity. Indeed, there are many examples of where it is useful.

At a second level, one can consider similarity based on such elements as

the length and strength of cause and effect. That is, if the effect of

interest is large (i.e., is of substantial duration and/or magnitude), people

will expect the cause(s) to be of comparable size. For example, the germ

theory of disease advanced by Pasteur must have seemed incredible to his

contemporaries in that people were asked to believe that invisible creatures

caused death, plagues, and so on. In the same way, it is equally difficult

for many to believe that billions of dollars spent on social programs in the

160s and '70s could have had little or no effect, or that long term and

complex effects like poverty can have short term and simple causes.

It seems clear that of all the cues, similarity is most dependent on

prior knowledge and context. Indeed, when similarity is considered at higher

levels of abstraction, as in metaphor, the line between similarity as a cue

and similarity as encompassing prior theory is ill-defined. Furthermore,

since similarity involves particular causes and effects, it could be argued

that content knowledge, and thus prior theory, is always engaged in assessing

the strength of this cue. While we agree with such a position, we neverthe-

less feel that it is useful to delineate the various types of similarity used

in determining causal strength.

Combining Cues-to-Causality

Given that multiple cues are used in making inferences, it is important

to determine how they are combined. Fortunately, there is an extensive

literature concerned with modeling the cue combination process (see Hammond,
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McClelland & Mumpower, 1981 for an overview). From our perspective, a major

issue in this literature concerns the type of combining rule people use; i.e.,

is the rule compensatory (thereby implying trade-offs between the cues), non-

compensatory (implying no trade-offs), or some mixture (allowing some cues to

trade-off but restricting others)? For the cues ccnsidered here, the last

alternative seems most attractive. The reason is that contiguity and

covariation seem likely to trade-off to some degree; similarity to a lesser

degree; and temporal order least of all. Therefore, the following partially

compensatory model for combining cues-to-causality in determining gross

strength, is proposed;

s(Y,x IB) 2Q2 + 3 Q3 + 4Q4) (9)

where, QI , temporal order = (0,1)

92 - contiguity

Q3 = covariation

Q4 - similarity

0 if Q 4 < threshold

I if otherwise

i - importance weight for the ith cue (i = 1, ... , 4)

Note that if either temporal order is inappropriate or similarity is

below threshold, gross strength is zero.2 Otherwise, the cues of contiguity,

covariation, and similarity will trade-off. The evidence in favor of (9)

comes from several sources. First, consider Michotte's (1946) demonstrations

of the perception of causality induced by moving objects. In particular,

ichotte's subjects perceived causal relations when the movement of objects

after contact was congruent with prior trajectories and/or positions. On the



25

other hand, when contiguity was high but similarity low, no causal relation

was perceived. For example, there was no causal impression when one object

touched the other and the latter changed color, got larger, or rose. Indeed,

Michco :ted that to obtain a causal effect, "requires a certain degree of

si: : . etween the movement of the agent and the change in the patient,

wi:: .-I.Lh the change would not appear as an 'extension' of the first"

(Michotte, 1946, p. 210). Further evidence concerning the threshold nature of

similarity is provided by the literature demonstrating the limits of classical

conditioning. For example, whereas Watson and his colleagues were able to

condition little Albert to fear rabbits by pairing the appearance of a rabbit

with that of a large noise, they could not produce the same effect when the

rabbit was replaced by a block of wood or a cloth curtain (Nisbett & Ross,

1980, p. 104).

Garcia and his colleagues (Garcia, et al., 1968; Garcia, et al, 1972;

Garcia, 1981) have also shown both the necessity of similarity and the fact

that it will trade-off with other cues. For example, they have demonstrated

that rats can learn to associate, after one trial, distinctive tasting food

and a gastro-intestinal illness (induced by x-rays) several hours later.

Thus, the similarity of food taste and intestinal illness compensated for the

lack of temporal contiguity. However, the threshold nature of similarity was

shown by the fact that rats do not learn to associate a different shape of

food to the illness, when the taste is familiar. In a related vein, Seligman

(1970) has reviewed many learning studies and concluded that organisms are

differentially prepared to learn different types of relations. The extent to

which such L. biological and could be overcome by relevant environ-

mental contingencies is controversial. However, the fact remains that some

level of similarity between cause and effect, in terms of congruity of length
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and strength and/or physical resemblance, is a crucial cue and nay often be

necessary.

The idea that similarity can be traded-off has also been demonstrated in

studies of children's causal judgments (see Sedlak & Kurtz, 1981 for a

review). For example, Shultz and Ravinsky (1977), in contrasting covariation

with similarity, found that 6-year olds were unwilling to label dissimilar

factors as causes, even in the presence of systematic covariation. on the

other hand, older children (10-12 years old) favored covariation over

similarity. They also found that the relative weights given to similarity vs.

temporal contiguity varied according to age; similarity outweighed temporal

contiguity for 6-year olds, but older children favored contiguity over

similarity. It is interesting to note that whereas animals and young children

may resolve conflicts between similarity and contiguity by compromise

judgments, adults can resolve the conflict in a more sophisticated way; viz.,

by distinguishing between "precipitating" and "underlying" causes. The former

is generally some action or event that is high in temporal and spatial con-

tiguity but low in similarity of length or strength with the event. The

latter is generally based on high similarity of length and strength, with

contiguity being less important. For example, the precipitating cause of

World War I was an assassination in Sarajevo, but the underlying cause(s) were

economic upheaval, German nationalism, and so on.

Whereas conflicts exist between pairs of cues, conflict can also exist

between all the cues. This issue can be highlighted by considering the

concept of spurious correlation (Einhorn & Hogarth, 1982). The existence of

this concept suggests that some correlations are more (or less) causally

related than others, and thereby raises the issue of how to tell the differ-

ence (cf. Simon, 1954). For example, consider the correlation between the
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number of pigs and the amount of pig-iron (Ehrenberg, 1975). Such a cor-

relation seems spurious when the common causal factor, "economic activity," is

considered. On the other hand, consider the correlation between amount of

rain and number of auto traffic accidents in a city, over the course of a

year. Such a correlation does not seem spurious (or at least, less spurious).

What is the difference between these two cases?

If one makes use of the cues-to-causality, the spuriousness of the cor-

relation between pigs and pig-iron becomes apparent. That is, although the

covariation and temporal contiguity cues point to a causal relation, the other

cues do not. Specifically, temporal order cannot be used to specify which

variable is cause or effect; there is low spatial contiguity (it being

unlikely that farms and factories are in close physical proximity); and the

similarity of the variables is only with respect to their names. Indeed, the

judgment that the relation is spurious is made easily and is in full accord

with equation (9). That is, the two most important cues in the equation,

temporal order and similarity, point away from a causal relation. Thus, the

judgment of spuriousness can be made with much confidence. Now consider the

second case: assuming that there is a statistical relation, note how the other

cues reinforce that link. The temporal order of rain and accidents is clear;

contiguity is high both for time and space; and similarity, via the use of

prior knowledge about the effects of slippery roads, is high. There seems

less doubt that the correlation is "real."

When cues-to-causality conflict, spurious correlation is not the only

outcome; e.g.* a low or zero statistical correlation could mask a true causal

relation. To illustrate, imagine that we were ignorant as to the cause of

birth. However, it has been suggested that sexual intercourse is related to

pregnancy and the following experiment was designed to test this hypothesis:



TABLE 1

Data Matrix for Hypothetical
Intercourse-Pregnancy Experiment

Pregnancy

Yes No

Ys20 80 100
Intercourse Ye

NO 5 95 100

25 175 200
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100 couples were allocated at random to an intercourse condition, and 100

to a non-intercourse condition. As indicated in Table 1, 25 females became

Insert Table I about here

pregnant, and 175 did not. In light of our current knowledge (but unknown

to our hypothetical selves), we can state that the 5 people in the no-

intercourse/yes-pregnancy cell represent "measurement error," i.e., faulty

memory in reporting, lying, etc. Since the statistical correlation is small

(r - 0.34), we might question whether the hypothesis is worth pursuing.

Indeed, if the sample size were smaller, the correlation might not even be

"significant." Moreover, even with a significant correlation, r2 _ 0.12,

which is hardly a compelling percentage of the Y variance accounted for by X.

There are two important implications of this example. First, whereas

statistics texts correctly remind us that correlation does not necessarily

imply causation, the imperfect nature of this cue to causality is also

reflected in the statement: causation does not necessarily imply correlation.

We have somewhat facetiously labeled examples of the latter as "causalations,"

giving them equal standing with the better-known and opposite concept of

spurious correlation. Second, causalation demonstrates that sole reliance on

a single cue, such as covariation, is inadequate for understanding causal

relations. Indeed, the use of multiple cues highlights the role of judgment

in such interpretations (see also Simon, 1954) and the cues-to-causality

provides a basis for understanding how these are formed.

Empirical Evidence

Our theory deals with both the variables and combining rules used in

making causal judgments. In addition, we have organized our discussion around

three major components; the discounting of explanations by alternatives, the
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role of the causal background, and the importance of cues-to-causality. Our

experimental strategy is to test each of these components separately although

their interdependence leads to joint testing in some experiments. The experi-

mental work is organized as follows: (a) we first provide a test of the

anchor-and-adjust model by fitting its parameter to experimental data and then

comparing its predictions for various combinations of explanations. and alter-

natives; (b) we next consider how the cues-to-causality are combined in deter-

mining the gross strength of an explanation; (c) we demonstrate how a shift in

the causal background affects judgments of causal relevance.

Experiment 1

The purpose of this experiment was to test the anchor-and-adjust model by

estimating the parameter a (equation (5)) from empirical data and then

subjecting the model to a predictive test. To do this, subjects were first

given a short paragraph to read in which the four cues to covariation (recall

equation (8)) were presented for a dichotomous outcome (Y) and a suspected

cause (X). Subjects were then asked to rate how likely they thought the

outcome was caused by X. After doing this, another paragraph was presented in

which an alternative explanation (Zl) was given. The evidence for Z, also

consisted of the same type of covariation data. Subjects were then asked to

rate the likelihood of the original hypothesis in light of the additional

evidence. A second alternative (Z2 ) was then presented in the same way and

the subject again rated the likelihood of the original explanation. There-

fore, in our terms, each subject made a judgment of the gross strength of X

-. net strength judgments (after alternatives ZI and Z2 ).

Subjects. A total of 197 subjects participated in this experiment; 119

were University of Chicago students and staff recruited through ads placed on



30

campus; 31 were University of Illinois students; and 47 were nembers of a

church group that agreed to participate. All subjects were paid $2.00 (a

donation was made to the church for those in the latter group).

Stimuli. Two different content scenarios were used.3 The first involved

the cause of birth defects. The three explanations were: (a) whether the

mothers had drunk at least one alcoholic drink per day during pregnancy;

(b) whether the mothers drank coffee daily; and, (c) whether the parents

had a history of mental illness. The second scenario concerned a marathon

race in which the participants ran faster than, or equal to, their own average

in previous races. The three explanations given for differential performance

were: (a) whether the participants had run in the same event before;

(b) whether the runners engaged in sexual activity the day before the race;

and (c) whether they had participated in a special one-week diet before the

race. In order to induce different gross strengths of the explanations in

both scenarios, the statistical correlation between the possible cause and the

effect was varied. In the birth defects scenario, the alcohol explanation had

an r - .34; coffee had an r = .20; mental illness, r - .19. In the marathon

scenario, the diet explanation had an r a .34; previous race had r - .25;

sexual activity, r - .03.

Design and procedure. For each scenario, there are 6 permutations of the

3 explanations (31 - 6). Thus, each explanation can appear twice as the

initial hypothesis, although with a different order of the alternatives.

Accordingly, there were 6 experimental conditions representing each of the

possible orders and subjects were randomly assigned to one of the conditions.

After subjects completed one scenario, they were assigned to one of the six

conditions in the other scenario and completed the three ratings as before.

Order of presentation of the scenarios was randomized across subjects.
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Estimating the model. To fit equation (5) to the experimental data, we

used the average judgments of the subjects in eac of the six orders. Thus,

the anchor-and-adjust model can be re-written as,

§k(YXIB) = _1 (Y,x1B) - [((YXB)' s,ZkB) + e (10)

where, e = error due to judgmental inconsistency

To illustrate how we estimated a, consider the birth defects scenario with

the explanations given in the order, "alcohol-mental illness-coffee." When

the alcohol explanation was given first, the average judged likelihood (gross

strength) was .58. After the first alternative, net strength was .51; after

the second alternative, net strength was .46. Now consider the first net

strength as a function of the gross strengths of X and Z, (mental illness);

.51 = .58 -(.58) s(mental illness) + e (11)

Since the mental illness explanation appears as the initial hypothesis in two

of the other orders, its average rating was used as the gross strength of the

alternative (.40) in (11). When equation (11) is solved for a, a = 3.28.

In a similar manner, we computed a for the first net strengths in the five

other orders and took the average as our best estimate (3). This value was

then substituted into equation (10) to predict the net strengths of X after

both one and two alternatives. Therefore, the basic test of the model con-

cerns how well it predicts the discounted causal strength of an explanation.

Results. The first results concern whether the covariation data affected

the average gross strengths of the three explanations in both scenarios. In

the birth defects scenario, the average gross strengths (with the correspond-

ing r's in parentheses) were: alcohol, .52 (r - .34); coffee, .49 (r - .20);

and mental illness, .40 (r - .19). In the marathon scenario, the results
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were: diet, .58 (r = .34); previous race, .46 (r = .25); and sexual activity,

.22 (r = .03). Therefore, the average gross strengths of the explanations

were monotonically increasing with the covariation cue.

The major results for predicting the net strength of X in the two

scenarios are shown in Table 2. The table shows the six orders for both

Insert Table 2 about here

scenarios, the average gross strength of X for the specific order (So(X,

the average net strengths after alternatives Z, and Z2 (S1, S2) , and the

predicted net strengths (s1, S 2 ) using the model in (10). The actual values

in the table are averages based on approximately 30 subjects per order.

First, note that the a values are greater than 1 and quite similar in both

scenarios (a = 2.61 and 2.42 for the birth defects and marathon scenarios,

respectively). Recall that when a > 1, adjustment weights are less than the

anchor and disconfirmatory evidence receives a small weight. Therefore, for

our subjects in these scenarios, a single explanation is not greatly

discounted by alternatives. We emphasize the conditional nature of our

results by stressing that other scenarios may induce a different weighting of

alternative explanations.

The basic test of our model involves the accuracy of the predictions of

net strength. Consider the birth defects scenario and note how closely the

model's predictions match the actual data. Indeed, the mean absolute

deviation (MAD) of actual versus predicted is .017. The results for the

marathon scenario were not quite as good (MAD = .030). Moreover, in this

scenario, two orders (diet-race-sex; race-sex-diet) had S2 > S1, contrary to

the model. However, over both scenarios and both net strengths, we consider

these results as strongly supporting the anchor-and-adjust model (the astute

reader will no doubt infer that our own a > 1 for our theory).



TABLE 2

Actual and Predicted Net Strengths for
Two Scenarios in Experiment 1

O r d e r s, Strength of X

X I s 0 (X) SI S S2 2

Birth defects (u - 2.61)

Alcohol Ment. Ill. Coffee .58 .52 .49 .45 .43

Alcohol Coffee Ment. Ill. .49 .42 .41 .38 .38

Coffee Ment. Ill. Alcohol .50 .45 .44 .41 .39

Coffee Alcohol Ment. Ill. .48 .40 .40 .36 .36

Ment. Ill. Coffee Alcohol .43 .37 .37 .35 .33

Ment. Ill. Alcohol Coffee .36 .26 .33 .27 .25

Marathon (a - 2.42)

Diet Sex Race .57 .51 .51 .46 .42

Diet Race Sex .59 .45 .46 .49 .42

Race Sex Diet .41 .40 .38 .41 .34

Race Diet Sex .52 .42 .40 .41 .39

Sex Race Diet .16 .13 .16 .10 .12

Sex Diet Race .27 .26 .25 .19 .24
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Experiment 2

The major emphasis of Experiment 1 was to put the anchor-and-adjust

model to a predictive test. To do so, we manipulated gross strergth via

the covariation cue. The purpose of the experiments reported here is to

demonstrate the effects of varying several cues-to-causality simultaneously.

In so doing, we wish to test the form of equation (9); i.e., the rule that

describes how the cues are combined in assessing gross strength. In addition,

we provide further predictive tests of the anchor-and-adjust model.

Experiment 2A

Subjects were first required to read scenarios and then to rate the

likelihood that two variables were causally related. The cues manipulated in

the experimental design were contiguity, similarity (defined operationally

below), and the four data cues (qi) that comprise covariation in the

dichotomous case. After the rating, subjects were provided with a specific

alternative and then asked to re-assess causal strength.

Subjects. There were 32 subjects recruited through an advertisement in

the University student newspaper. They were offered $5 an hour to participate

in an experiment on judgment. Their median age was 24, their educational

level was high (mean of 4.4 years of post high school education), and there

were 16 males and 16 females.

Stimuli. The stimuli consisted of eight scenarios varying in length from

100 to 200 words. These concerned: (1) The efficacy of accounting reports in

a chain of supermarkets; (2) the study habits of a graduate student; (3) food-

poisoning following a church picnic; (4) weight-loss after attending a health

program; (5) the effects of environmental factors on the health of high school
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students; (6) the playing schedule of a tournament tennis player; (7) the

effects of new school textbooks on academic performance; and (8) thne relation

of diet to the performance of marathon runners.

operational Definitions

Two levels, high and low, of each of the causal cues were made opera-

tional in the following manner. For similarity, we first created cause-effect

pairs that we deemed to vary in similarity. This was independently verified

by having subjects rate the similarity of the pairs on a 0-10 scale. The mean

judgments for the high similarity pairs was 6.7 while the mean for the low

similarity pairs was 3.1. Note that since equation (9) implies that

similarity cannot be traded-off below a threshold, low similarity in this

experiment had to be above some minimum level. Independent ratings were also

collected for judgments of similarity for specific alternatives (mean of

7.5). For contiguity, high and low levels were simply defined by their

physical values (e.g., time in days). Several studies reviewed above have

shown the. perceived covariation is sensitive to the difference between

confirming and disconfirming data. Thus, to operationalize this variable in

the high condition, the ratio of confirming to disconfirming data was set at

approximately 2 to 1, in the low condition, the scenarios contained equivalent

amounts of confirming and disconfirming data. In fact, to avoid giving sub-

jects identical patterns of data across scenarios, the distribution of data in

the four dichotomous cells was slightly varied. Statistically, the high

covariation condition can be characterized by correlations between .33 and

.40, the low condition by coefficients between .00 and .10.

Procedure and design. Subjects were presented with a booklet containing

the 8 scenarios as well as several other experimental tasks. They were

instructed to work at their own pace and the average completion time was 1
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hour. The 8 scenarios were interspersed with other material to minimize

carry-over effects and to provide variety for the subjects. After reading

each scenario, subjects were required to mark their response on a 0-100 rating

scale. Furthermore, they were permitted to make notes or calculations. After

completing the rating, they were presented with a specific alternative

explanation on the following page. They then re-rated the strength of the

original causal variable and proceeded to the next task.

The experiment followed a 4-factor within-subjects design where the first

three factors were the causal cues, and the fourth factor contained the 8

scenarios arranged in a Latin-square. Specifically, each subject rated 8

different scenarios, where each scenario contained one of the 2 x 2 x 2 = 8

combinations of the cues. In order to form an 8 x 8 Latin-square, 4 subjects

were randomly assigned to each of 8 groups.
4

Results. Tables 3 and 4 report the main effects and interactions of

Insert Tables 3 and 4 about here

the cues. Note that the main effects for similarity and covariation are

significant and in the expected direction (i.e., higher values lead to greater

causal strength). Note also that there is a small but significant interaction

between similarity and covariation (the interaction shows that similarity has

a larger effect when combined with high rather than low covariation; i.e., it

follows a "fan" shape). However, there is no effect for contiguity.

That the specific content of scenarios is important is evidenced by the

scenario main effect as well as two weaker interactions. The scenario x

similarity interaction arises because there was no effect for similarity in

two scenarios (involving the weight-loss, and tennis player). The scenario x

covariation interaction occurred because differences in the two levels of

covariation had quite different effects in specific scenarios; e.g., almost no



TABLE 3

Analysis of Variance for Experiment 2A*

Source of variation df MS F p <

Between subjects 31

Groups 7 820.78 < 1 n.s.

Subjects within groups 24 1,687.50

Within subjects 224

Similarity (A) 1 12,762.53 29.45 .01

Contiguity (B) 1 1,410.94 3.26 n.s.

Covariation (C) 1 41,692.53 96.21 .01

A x C 1 2,697.50 6.22 .05

B x C 1 561.09 1.30 -n.s.

Scenarios (D) 7 2,145.56 4.95 .05

D x A 7 1,397.28 3.22 .01

D x C 7 1,040.65 2.40 .05

D x A x C 7 620.10 1.43 n.s.

Error (within) 191 433.37

*The experiment was also analyzed by a regression model using a dummy
variable coding scheme. The pattern of significance of main effects and
interactions was similar to that shown in this table. In addition, the
overall fit of the regression analysis was characterized by an R2  (adjusted
for degrees of freedom) of .34.



TABLE 4

Mean Ratings of Causal Strength by
Covariation and Similarity:

Experiment 2A

Covariati on

High Low

High .58 (.37) .26 (.19) .42

Similarity
Low .37 (.25) .19 (.14) .27

.47 .22 .34
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effect in the accounting report scenario, but large effects in the scenarios

concerning study habits, the tennis player, and the marathon runners. Whereas

we had no theory to predict these specific interactions, we consider then

important in that they support the notion that the cues are perceived

conditionally on the context or causal field in which they are embedded.

A surprising result was the lack of an effect for contiguity. However,

we reasoned that since the cues-to-causality are partially redundant in the

natural environment, subjects may not pay full attention to all potential cues

in a scenario. We consequently re-wrote four of the eight scenarios to

emphasize contiguity. Thirty-two subjects were then recruited and a further

experiment conducted. Results showed main effects for similarity, covari-

ation, and contiguity, and all in the expected directions. Thus, the results

for the first two cues replicate our earlier findings and the significant

result for contiguity illustrates that this cue can be used if it is made

sufficiently salient.

A further test of the anchor-and-adjust model. Since each subject re-

assessed causal strength after being presented with a specific alternative, we

were further able to estimate equation (5) P~nd put it to a predictive test.

However, unlike Experiment 1, we had no independent estimate of the gross

strength of the alternative. Rather, this had to be inferred from the data.

To demonstrate our procedure, consider Table 4 which not only shows the main

effects for covariation and similarity, but the mean ratings after seeing the

specific alternatives (in parentheses). Since the alternatives were identical

in all four conditions, equation (5) implies that the relation between mean

judgments before and after the alternatives can be represented by four

equations in two unknowns, viz:
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.37 - .58 - .58S C (high covariation/high similarity) (12a)

.25 - .37 - .37 C (high covariation/low similarity) (12b)

.19 - .26 - .26 C (low covariation/high similarity) (12c)

.14 - .19 - . 19w C (low covariation/low similarity) (12d)

where, C - mean gross strength of the specific alternatives.

The above equations suggest the following test: estimate a and C using

two equations, and then predict the net strength judgments in the other two

conditions by using the estimated quantities. Accordingly, we estimated

a - 1.25 and C - .41 from equations (12a) and (12b). These parameter

estimates were then used to predict the net strengths of equations (12c)

and (12d). The predictions were .18 (observed net strength - .19) and .14

(observed net strength - .14), respectively. 5 Apart from the accuracy of

these predictions, we believe these results to be significant in that they

demonstrate that our model can be used to make specific predictions even when

independent estimates of the gross strength of alternatives are not available.

Experiment 2B

Equation (9) states that if the similarity cue is below a threshold

value, gross strength will be zero. We tested this by varying the similarity

of X and Y so that some alternative explanations would have zero gross

strength and therefore, should not discount the initial hypothesis.

Subjects. Eighty subjects participated in Experiment 2B. They were all

MBA students at the University of Chicago, enrolled in the basic graduate

level statistics course.

Stimuli. The stimuli consisted of two of the eight scenarios drawn from

those used in Experiment 2A. For each scenario, there were two possible

alternatives, one high in gross strength and the other low. Moreover, for

each scenario, half of the stimuli were paired with the strong alternative and



half with the weak. Both initial stimuli were characterized a's hav'Ung high

values of all three of the causal cues and these were operationalized In the

same way as Experiment 2A. The similarity ratings for the alternative

explanations averaged 8.9 in the strong vs. 1.0 in the weak condition. Note,

in particular, that the low similarity rating for the alternatives is below

that used in Experiment 2A (3.1 on the same 0-10 scale) since we wished to

design alternatives for which the similarity cue was below the postulated

threshold in equation (9).

Procedure and design. Subjects were given booklets containing the two

scenarios and they were asked to rate the causal strength of a given factor on

the same 100 point scale used in Experiment 2A. Following this, subjects were

given an alternative explanation and then re-rated the causal strength of the

original hypothesis. After making these two ratings, the second scenario was

considered in the same way. Subjects were randomly assigned to one of two

conditions. half the subjects received scenarios paired with strong alterna-

tives, and the other half received scenarios paired with weak alternatives.

In addition, the order of scenario presentation was randomized across

subjects.

Results. For the judgments paired with poor alternatives, our assumption

concerning the similarity threshold in equation (9) implies that the net

strength of X should equal its initial gross strength. Furthermore, since the

judgments made after receiving the "good" alternatives are based on a subset

of the alternatives used in Experiment 2A, we can aLso predict these net

strength judgments by using the estimates for a and the gross strength of

alternatives (C) from that experiment (recall that these values are a

1 .25, C -. 41 ). The resulting predictions and observations are presented in

Table 5. This table shows that, in accordance with our theory, the weak
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Insert Table 5 about here

alternatives have virtually no effect. In addition, the mean absolute

prediction error for the net strengths after the strong alternative is .03.

The fact that the estimates used to make these latter predictions come from an

independent set of data (i.e., different subjects in a different experiment),

further attests to the predictive power of our model.

Experiment 3

We noted earlier that shifts in the causal background can change the

relevance of a causal explanation. The following experiment was designed to

test this.

Method and Results

Sixty-seven subjects were recruited from the University of Chicago

community and asked to respond to various experimental stimuli as part of a

study on decision making. Each subject was asked to respond to two scenarios,

with a gap of some 40 minutes between them (during which time other experi-

mental tasks were administered). Subjects were randomly assigned to one of

two groups that received the scenarios in different orders. The two scenarios

were as follows:

(1) A watch is placed on a table, face upwards. A hammer is
then brought down sharply on the face of the watch. The
glass of the watch face breaks and shatters.

(2) In a watch factory, procedures exist for testing various
aspects of the end product. one procedure is the follow-
ing: A watch is placed on a table, face upwards. A
hammer is then brought down sharply on the face of the
watch. Imagine that on one occasion the glass of the
watch face breaks and shatters.

Both scenarios were followed by identical questions:

Question: What caused the glass to break?
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a. The force of the hammer?
b. The defect in the glass?
c. Some other explanation (please specify).

Please circle the most likely cause.

Results of the experiment are presented in Table 6, and are shown for the

Insert Table 6 about here

combined groups since the order of presentation had no significant effect.

The table shows both the marginal and joint distributions of responses to the

different versions of the scenario. In the first scenario, 60 subjects (91%)

judged the force of the hammer as the most likely cause; however, in the

factory setting the defect in the glass is seen as the most likely causal

agent (36 subjects or 55%). Moreover, of the 60 subjects who said the force

of the hammer was the most likely cause in the first scenario, 32 subjects

reversed the order in the second. The experimental evidence clearly

demonstrates that the relevance of a causal hypothesis can be changed by

varying the background.

Discassion

The implications of our theory are now discussed with respect to:

(1) the factors that affect the discounting of an explanation; (2) issues

in combining the cues-to-causality; (3) problems in defining the causal

background; and, (4) some normative questions in assessing the quality of

causal judgments.

Discounting Explanations

The idea that alternatives reduce the causal strength of a hypothesis has

been amply demonstrated by many (cf. Kelley's "discounting principle," 1973;

Schustack & Sternberg, 1981). Furthermore, some researchers (e.g., Jones,

1979) have proposed a discounting process in which one anchors on a hypothesis



TABLE 5

Mean Ratings of Causal Strength Before and
After Weak vs. Strong Alternatives

in Experiment 2B

Before After Prediction*

sowx Si S

Weak Alternative

Scenario 1 .45 .43 .45

Scenario 2 .64 .61 .64

Strong Alternative

Scenario 1 .59 .43 .38

Scenario 2 .65 .42 .41

*For strong alternatives, a 1.25, C =.41. For weak alternatives,
C -0 by assumption.



TABLE 6

Effects of Shifts in the Causal Background

Scenario 1

Force of Defect in Other
hammer glass explanations

Force of

hammer 23 0 0 23

Scenario 2 Defect in 32 2 2 36
glass ______________

Other 5 0 2 7
explanations ______________________

60 2 4 66

Note: One subject responded to only one version of the stimulus and is therefore
excluded from the analysis.
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and adjusts for the plausibility of alternatives. While we are in obvious

agreement with this position, without further elaboration, it begs the

questions of how, and how much, the plausibility of explanations affects the

adjustment process. We believe that our theory takes a first step toward

answering these questions. Indeed, our model states that the effects of

plausibility are complex since the size of the adjustment depends on three

factors: the gross strengths of alternatives, the gross strength of the

hypothesis, and the weight given to disconfirmatory evidence (a).

Furthermore, by specifying the dynamics of the adjustment process and

incorporating them in a simple quantitative model, we were able to make

testable predictions of the amount of discounting.

We now consider some implications and extensions of the anchor-and-adjust

model. First, we interpreted the parameter a as reflecting the weight given

to alternatives in the adjustment process. Moreover, in our experiments,

a > 1, thereby implying that the initial gross strengths of the hypotheses

were not greatly discounted by alternatives. While we are tempted to explain

this as being consistent with much psychological research on the underweight-

ing of disconfirmatory data (e.g., Ross & Lepper, 1981) and the lack of search

for disconfirming hypotheses (e.g., Mynatt, et al. 1977, 1978; Tweney, et al.,

1980), we stress that a systematic research program is needed to examine the

determinants of a. At the very least, our approach suggests that a can

serve as a quantitative and interpretable dependent variable for studying such

factors as individual differences, expertise about the substantive content of

the scenario, set, and so on. Second, there are a number of "procedural"

variables that can be studied via our model (cf. Lopes, 1983). For example,

order of hypothesis presentation, simultaneous vs. sequential display of

information, and the like, may affect final net strength. While a discussion
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of these is beyond the scope of this paper, we note that our model predicts

order and presentation mode effects under certain conditions. Third, we have

assumed that alternatives always discount an explanation (or leave it

unchanged), although it is possible for an alternative to increase net

strength. For example, imagine that you believe strongly in a scientific

theory for which there are few competitors. You are then presented with an

absurd alternative explanation which leads to the following inference: if

this is the best alternative that people can generate, your belief in the

original theory should be increased. Our model might be extended to handle

such effects by allowing wk_1 to be negative in equation (3). In any event,

this type of complex inference, as well as the procedural effects discussed

above, have not yet been put to experimental tests. However, they illustrate

the richness of anchor-and-adjust strategies in inference (cf. Lopes, 1982b),

and the importance of a dynamic perspective in building descriptive models of

the judgment process (Hogarth, 1981).

Although we have concentrated on the role of alternative explanations in

discounting a hypothesis, it is important to n~ote that there is a constructive

aspect to diagnostic inference. That is, the ultimate purpose of such

inference is to generate-some causal explanation for observed effects. Thus,

while a particular explanation may be judged as inadequate after it is

discounted by alternatives, this does not mean that the diagnostic process

terminates at this point. Indeed, one is still left with the question, "If

it wasn't X, what did cause Y?" Therefore, while the testing of hypotheses

via comparison with alternatives is part of diagnostic inference, the latter

also involves a continuing search for better explanations. The distinction

between testing hypotheses and searching for better ones can be likened to a

"disconfirmation" vs. "replacement" model of inference. Indeed, the replace-
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ment view is consistent with the Kuhnian notion that theories in science are

not discarded, despite evidence to the contrary, if they are not replaced by

better alternatives (Kuhn, 1962). We believe that the replacement view is

equally strong in everyday inference. A useful analogy might be the

following: how many people would read detective stories if the author only

revealed who didn't do it?

Combining the Cues-to-Causality

By considering causal judgments as resulting from the weighting and

combining of cues-to-causality, our theory directs attention to issues that

might otherwise be ignored. We now consider some of these: (a) What are the

ecological validities of the cues? - It has been assumed throughout this paper

that the cues-to-.ausality have imperfect but non-zero ecological validities;

i.e., each cue is predictive of a true causal relation. How do we know

this? Simply put, we don't. The reason is that without some measure of

"true" causality, no determination of accurate causal knowledge is strictly

possible. However, the fact that the cues we have considered are implicated

in a wide variety of studies with both human and animal subjects, leads us to

believe that they would not continue to be used if they were useless. There-

fore, our argument is a functional and practical one; viz., given the impor-

tance of learning and inferring causal relations for survival, we do not

believe that the cues on which this depends are totally worthless. On the

other hand, we do not advocate the position that if something is used, it must

be beneficial for the organism. Such a view is untenable for many reasons

(see Einhorn & Hogarth, 1981); (b) What role does cue redundancy (inter-

correlation) play in causal judgments? - While we have treated the cues-to-

causality as conceptually distinct, it seems likely that they are correlated

in the environment. However, the determination of these correlations would
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require an elaborate (and problematic) ecological analysis that is beyond the

scope of this paper. Nevertheless, the assumption of correlated cues seems

warranted since people have strong expectations concerning what cues go

together. Indeed, just as in the perception of incomplete figures (where one

fills in the missing parts), scenarios are filled in by assuming that cues not

explicitly mentioned are in fact present. Thus, the fact that one generally

perceives the world as cohert;-nt, suggests that the cues-to-causality are

redundant to some degree; (c) Reducing inconsistency in causal judgment - many

studies have shown that inconsistency in the execution of judgmental

strategies leads to decrements in performance (Hamnond, Hursch, & Todd, 1964;

Goldberg, 1970). Thus, to the extent that people are inconsistent in the

cognitive strategies used to make causal judgments, it follows that the

accuracy of these judgments will be reduced. This observation assumes, of

course, that there is some ecological criterion of causality. However, in the

absence of a measurable criterion, the mechanical combining of the cues

suggests the possibility of improving diagnostic judgment via a

"bootstrapping" model in the same way as has been demonstrated im predictive

judgment (see e.g., Dawes, 1971).

Role of the Causal Background

The most important implication of the causal background is that causal

strength is not a thing-in-itself, but rather a relation between factors.

Thus, we believe that the essential role of context in assessing causal

relations makes the search for a purely structural definition of cause

difficult. To be sure, equations (1) - (9) attempt to provide such a

structure, but they are limited by the lack of specificity as to what

constitutes the background in any given situation. In one sense, this vague-

ness can be seen as a positive attribute in that it reflects the corresponding
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vagueness that people have about the assumptions that underlie their causal

judgments. On the other hand, it highlights the need for a theory of how,

when, and why, particular backgrounds are invoked. The components of such a

theory will not only need to consider how expectations affect inferences, but

also how expectations change with shifts in the background. Furthermore, the

role of prior knowledge in both conditioning the cues and in providing a

meaningful context for understanding causal connections must be developed.

In this regard we find the concept of a "script" to be a useful way to concep-

tualize an organized set of expectations (Abelson, 1981). However, much

remains to be done in linking scripts/schemas to the causal background and

the assessment of causal strength.

A second important implication of the causal background relates to

surprise. Thus, when expectations that rest on an assumed background are

violated, this can be an important cue for reorganizing or re-structuring

one's hypotheses. For example, imagine a hit-and-run accident in which all 10

witnesses said the cffending car was going 73 miles per hour at the moment of

impact. Since we expect much greater variability in such estimates, as well

as round numbers, this surprising unanimity might cue one to ask whether the

witnesses had colluded in their responses. Similarly, the structure of

outcomes can suggest new hypotheses such that the diagnosis contradicts the

surface meaning of the evidence. Thus, scientific data that are too perfect

can suggest fraud (see, for example, Kamin, 1974, on Burt's twin data; Bishop,

et al., 1975, on Mendel's pea experiments), evidence in a trial that is too

consistent and obvious can suggest the defendant was Oframed," and one can

"protesteth too much" in a variety of circumstances. Such examples illustrate

that violations of expectations can trigger a re-structuring of alternatives.

Of course, specifying the conditions that lead to re-structuring as opposed to

other responses remains an important and unanswered question.
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Normative Problems

Our theoretical analysis raises the following question: since there is

no agreed-on theory of causality, is it possible to say anything about the

quality of diagnostic inferences and the causal judgments on which they are

based? while we have no definitive answers, we discuss two trade-of fs that

are germane to this question: (1) acquisition of causal knowledge vs. super-

stition; (2) achieving "order-out-of-chaos" vs. limiting creativity.

Causal Knowledge vs. Superstition

We have asserted that the cues to causality have ecological validity and

that accurate causal knowledge depends partly on their use. However, since

the cues are imperfectly valid, the discovery of causal relations can be

likened to a complex, multivariate signal detection task where the presence of

cause is sought against a background of randomness or noise (cf. Lopes,

1982a). There are several implications of this signal detection analogy.

First, people must stt a cut-off point to decide whether or not some factor is

to be considered a cause. Second, the position of this cut-off will reflect

two types of errors and their associated costs. That is, on the one hand,

people can infer causes when they do not exist; on the other hand, they can

make the error of failing to infer true causal relations. Moreover, whereas

several studies have addressed the former and discussed human susceptibility

to "illusions of control' (e.g., Langer, 1975), there has been less awareness

of illusions of lack of control (however, see Seligman, 1975; Alloy &

Abraumson, 1979). Nonetheless, given the importance of inferring causal

relations for survival, one could argue that the former illusion is less

costly than the latter. Indeed, one can consider superstition as the price

that one pays for causal knowledge (cf. Skinner, 1966), although it is an open

question as to whether the price is worth the benefits in any particular
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situation. Finally, a third implication of the signal detection analogy is

that people may exhibit differential sensitivity to seeing causal relations

through either training (e.g., developing expertise), or ability.

In addition to using the cues to causality, our position also implies

that accurate causal judgment involves the elimination of alternative

explanations. However, as vividly demonstrated by the concept of spurious

correlation, several variables may be highly correlated in the natural ecology

so that the determination of causal relations is problematic. Thus, from this

viewpoint one can sympathize with the ingenuous teenager who asked Dear Abby:

would she get pregnant from holding hands with her boy-friend? Given that

this causal candidate and the true cause are both correlated and share many of

the same cues-to-causality, only a true experiment could resolve the issue.

Indeed, the importance of experiments for disentangling correlated factors has

been stressed by Hammond (1978). He points out that much learning through

experience often rests on the weakest mode of inference--unaided judgment

based on passive observation. From a normative viewpoint, the prevalence of

correlated alternatives reinforces the need for experimentation in making

valid causal inferences (cf. Einhorn & Hogarth, 1978).

Order Out-of-Chaos vs. Creative Thought

The causal field and the cues to causality both play an important role

in limiting the number of interpretations people make in inferential tasks,

and thus in creating "order-out-of-chaos." Furthermore, the adoption of a

particular background and the use of the cues proceed quickly and are often

marked by a lack of awareness that a delimiting process has taken place. The

benefits to be gained from such automatized processes are large. However,

they come at the cost of reducing the probability that people can achieve more

creative representations of inferential tasks. Indeed, Campbell (1960) has
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stressed the importance of deliberately introducing random variation to

stimulate creative efforts, especially in science. Without such random per-

turbations, he argues that the forces that maintain a person's particular

conception of a problem are too strong. Moreover, the literature on

creativity has many examples of techniques that are aimed precisely at making

people aware of the delimiting assumptions they bring to tasks (see, e.g.,

Adams, 1976). In addition, when using such techniques, people are often

requested to refrain from counterfactual reasoning and to make specific use

of analogies and paradox to enjoin previously disconnected ideas. In short,

to restructure problems in creative ways frequently requires attempts to

counter the habitual forces of causal reasoning.

Conclusion

This paper has emphasized the fundamental role of causal judgments in

diagnostic inference and argued that causal. judgments are made in relation to

a causal background or field; people use multiple, probabilistic cues-to-

causality in forming their judgments; and, an explanation is discounted as a

function of its initial strength and the plausibility of alternatives.

Moreover, these ideas can be summarized by a perceptual analogy in which

figures are seen against ground (causal candidates are differences-in-a-

background), good figures azre consistent with Gestalt princ iples (good

explanations arise from internally consistent patterns of cues), and, good

figures have few alternatives (as do good explanations).

Whereas our model accounts for many findings in the literature as well as

our own experimental results, it by no means explicates all aspects of causal

reasoning. in particular, inferences made on the basis of complex scenarios,

the assessment of causal chains, issues of multiple and redundant causation,
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etc., present formidable difficulties and challenges for behavioral research.

However, given the complexity of these issues, it seems appropriate to have

started with a simple model based on alternatives, background, and cues; i.e.,

the ABC of causal judgment.

,, , . L , . ... ... ... . . ... ...
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Footnotes

This work was supported by a contract from the Office of Naval

Research. We would like to thank Zvi Gilula, Marlys Lipe, John Lyons,

Haim Mano, Ann McGill, and Werner Wothke for their assistance on this

project. In addition, the following people provided us with many useful

comments on earlier versions of the paper: Robert Abelson, Berndt Brehmer,

Colin Camerer, Norman Dalkey, Don Fiske, five anonymous referees, William

Goldstein, Ken Hammond, Joshua Klayman, Howard Kunreuther, Lola Lopes,

Al Madansky, John Payne, Jay Russo, Paul Schoemaker, and Arnold Zellner.

ISince equation (5) is bounded by 0 and 1 and a ) 0 from equation (4),

it can be shown that,

log s(YZ kIB)
a) mx 1- log Sk-i(YXIB) ]

This implies that when low anchors are paired with strong alternatives, a is

closer to 1 than 0. Such a constraint makes sense, under these circumstances,

since weak anchors cannot be discounted to be less than "worthless" by strong

alternatives.

2 Equation (9) assumes that the cues are measured without error. However,

the cue of temporal order could trade-off with other cues if there were doubts

about the order in which X and Y occurred. Equation (9) would then become,

s(Y,XIB) - y(X1Q1  + X Q + )3Q3 + X 4Q4)

3 Copies of all scenarios, in all experiments, can be obtained from the

authors.



4 Since a Latin square involves an incomplete design, it should be noted

that one cannot test all possible interactions. However, since we have no a

priori theory regarding interactions, this is a minor limitation of the

design. On the other hand, since some interactions can be tes ted, we chose

to examine those of greatest potential importance.

5 Similarly, using equations (12c) and (12d) to estimate a and C, we

obtain a - 1.47 and C w .57. when these values are used to predict the

net strengths of 012a) and 012b), the results are .32 (observed net strength

-. 37) and .24 (observed net strength -. 25), respectively.
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